Sunday, November 1, 2015

JENIS-JENIS OSILATOR LC

jenis-jenis osilator lc, osilator armstrong, osilator colpitts, osilator hartley, osilator clapp

OSILATOR LC
Tugas Elektronika Komunikasi II
rangkaian dasar osilator lc armstrong
Rangkaian Dasar Osilator Armstrong
1.    Osilator Amstrong

Osilator Amstrong seperti diperlihatkan pada gambar 1.1 dibawah ini merupakan hasil penerapan osilator LC. Rangkaian dasar dibuat dengan memberikan panjar maju pada sambungan emitor-basis dan panjar mundur pada kolektor. Pemberian panjar dilakukan lewat resistor R3 . Resistor R1 dan 2 R berlaku sebagai pembagi tegangan.

Gambar 1.1.Rangkaian Dasar Osilator Amstrong
Gambar 1.2. Kurva Karakteristik

Saat awal transistor diberi daya, resistor 1 R dan 2 R membawa transistor ke titik pengoperasian Q pada bagian tengah garis beban (lihat gambar 17.7-b). Keluaran transistor (pada kolektor) secara ideal adalah 0 volt. Saat terjadi hantaran arus awal pada saat dihidupkan, terjadi darau (noise) yang akan terlihat pada kolektor. Namun biasanya berharga sangat kecil. Misalnya kita mempunyai isyarat -1 mV yang nampak pada kolektor. Transformator T1 akan membalik tegangan ini dan menurunkannya dengan faktor 10 (nisbah primer-sekunder 1:10). Isyarat sebesar +0,1 mV akan nampak pada C1 pada rangkaian basis.

Perhatikan bahwa transistor memiliki = 100. Dengan +0,1 mV berada pada basis, 1 Q akan memberikan isyarat keluaran sebesar -10 mV pada kolektor. Perubahan polaritas dari + ke – pada keluaran akibat adanya karakteristik dasar penguat emitorbersama. Tegangan keluaran sekali lagi akan mengalami penurunan oleh transformator dan diberikan pada basis 1 Q . Isyarat kolektor sebesar -10 mV sekarang akan menyebabkan terjadinya tegangan sebesar + 1 mV pada basis. Melalui penguatan transistor, tegangan kolektor akan segera menjadi -100 mV. Proses ini akan berlangsung, menghasilkan tegangan kolektor sebesar -1 V dan akhirnya -10 V. Pada titik ini, transistor akan membawa garis beban sampai mencapai kejenuhan (perhatikan daeran ini pada garis beban). Sampai pada titik ini tegangan kolektor tidak akan berubah.

Dengan tanpa adanya perubahan pada C V pada kumparan primer 1 T , tegangan pada kumparan sekunder secepatnya akan menjadi nol. Tegangan basis secapatnya akan kembali pada titik Q. Penurunan tegangan basis ke arah negatif ini (dari jenuh ke titik Q) membawa C V ke arah positif. Melalui transformator, ini akan nampak sebagai tegangan ke arah positif pada basis. Proses ini akan berlangsung melewati titik Q sampai berhenti pada saat titik cutoff dicapai. Transformator selanjutnya akan berhenti memberikan masukan tegangan ke basis. Transistor segera akan berbalik arah. 1 R dan 2 R menyebabkan tegangan basis naik lagi ke titik Q. Proses ini akan terus berulang: 1 Q akan sampai di titik jenuh – kembali ke titik Q – ke cutoff - kembali ke titik Q. Dengan demikian tegangan AC akan terjadi pada kumparan sekunder dari transformator.

Frekuensi osilator Armstrong ditentukan oleh nilai 1 C dan S (nilai induktasi diri kumparan sekunder) dengan mengikuti persamaan frekuensi resonansi untuk LC. Perhatikan 1 C dan S membentuk rangkaian tangki dengan mengikutkan sambungan emitor-basis dari 1 Q dan 1 R .

Keluaran dari osilator Armstrong seperti pada gambar di atas dapat diubah dengan mengatur harga 3 R . Penguatan akan mencapai harga tertinggi dengan memasang 3 R pada harga optimum. Namun pemasangan 3 R yang terlalu tinggi akan mengakibatkan terjadinya distorsi, misalnya keluaran akan berupa gelombang kotak karena isyarat keluaran terpotong.
2.    Osilator Colpitts

Osilator Colpitts sangat mirip dengan osilator Shunt-fed Hartley. Perbedaan yang pokok adalah pada bagian rangkaian tangkinya. Pada osilator Colpitts, digunakan dua kapasitor sebagai pengganti kumparan yang terbagi. Balikan dikembangkan dengan menggunakan “medan elektrostatik” melalui jaringan pembagi kapasitor. Frekuensi ditentukan oleh dua kapasitor terhubung seri dan induktor.

Gambar 2.1. Osilator Colpitts

Gambar 2.1 memperlihatkan rangkaian osilator Colpitts. Tegangan panjar untuk basis diberikan oleh 1 R dan 2 R sedangkan untuk emiitor diberikan oleh 4 R . Kolektor diberi panjar mundur dengan menghubungkan ke bagian positif dari CC V melalui 3 R . Resistor ini juga berfungsi sebagai beban kolektor. Transistordihubungkan dengan konfigurasi emitor-bersama.

Ketika daya DC diberikan pada rangkaian, arus mengalir dari bagian negatif CC V melalui 4 R , 1 Q dan 3 R . Arus C I yang mengalir melalui 3 R menyebabkan penurunan tegangan C V dengan harga positif. Tegangan yang berubah ke arah negatif ini dikenakan ke bagian atas 1 C melalui 3 C . Bagian bawah 2 C bermuatan positif dan tertambahkan ke tegangan basis dan menaikkan harga B I . Transistor 1 Q akan semakin berkonduksi sampai pada titik jenuh.

Saat 1 Q sampai pada titik jenuh maka tidak ada lagi kenaikan C I dan perubahan C V juga akan terhenti. Tidak terdapat balikan ke bagian atas 2 C . 1 C dan 2 C akan dilucuti lewat 1 L dan selanjutnya medan magnet di sekitarnya akan menghilang. Arus pengosongan tetap berlangsung untuk sesaat. Keping 2 C bagian bawah menjadi bermuatan negatif dan keping 1 C bagian atas bermuatan positif. Ini akan mengurangi tegangan maju 1 Q dan C I akan menurun. Harga C V akan mulai naik. Kenaikan ini akan diupankan kembali ke bagian atas keping 1 C melalui 3 C . 1 C akan bermuatan lebih positif dan bagian bawah 2 C menjadi lebih negatif. Proses ini terus berlanjut sampai 1 Q sampai pada titik cutoff.

Saat 1 Q sampai pada titik cutoff, tidak ada arus C I . Tidak ada tegangan balikan ke 1 C . Gabungan muatan yang terkumpul pada 1 C dan 2 C dilucuti melalui 1 L . Arus pelucutan mengalir dari bagian bawah 2 C ke bagian atas 1 C . Muatan negatif pada 2 C secepatnya akan habis dan medan magnet di sekitar 1 L akan menghilang. Arus yang mengalir masih terus berlanjut. Keping 2 C bagian bawah menjadi bermuatan positif dan keping 1 C bagian atas bermuatan negatif. Tegangan positif pada 2 C menarik 1 Q dari daerah daerah cutoff . Selanjutnya C I akan mulai mengalir lagi dan proses dimulai lagi dari titik ini. Energi balikan ditambahkan ke rangkaian tangki sesaat pada setiap adanya perubahan.

Besarnya balikan pada rangkaian osilator Colpitts ditentukan oleh “nisbah kapasitansi” 1 C dan 2 C . Harga 1 C pada rangkaian ini jauh lebih kecil dibandingkan dengan C2 atau C1 C2 X X . Tegangan pada 1 C lebih besar dibandingkan pada 2 C . Dengan membuat 2 C lebih kecil akan diperoleh tegangan balikan yang lebih besar. Namun dengan menaikkan balikan terlalu tinggi akan mengakibatkan terjadinya distorsi. Biasanya sekitar 10-50% tegangan kolektor dikembalikan ke rangkaian tangki sebagai balikan.
3.    Osilator Hartley

Osilator Hartley seperti pada gambar 3.1 banyak digunakan pada rangkaian penerima radio AM dan FM. Frekuensi resonansi ditentukan oleh harga 1 T dan 1 C . Kapasitor 2 C berfungsi sebagai penggandeng AC ke basis 1 Q . Tegangan panjar 1 Q diberikan oleh resistor 2 R dan 1 R . Kapasitor 4 C sebagai penggandeng variasi tegangan kolektor dengan bagian bawah 1 T . Kumparan penarik RF ( 1 L ) menahan AC agar tidak ke pencatu daya. 1 L juga berfungsi sebagai beban rangkaian. 1 Q adalah dari tipe n-p-n dengan konfigurasi emitor bersama.
Gambar 3.1. Rangkaian Osilator Hartley

Saat daya DC diberikan pada rangkaian, arus mengalir dari bagian negatif dari sumber lewat 1 R ke emitor. Kolektor dan basis keduanya dihubungkan ke bagian positif dari CC V . Ini akan memberikan panjar maju pada emitor-basis dan panjar mundur pada kolektor. Pada awalnya E I , B I dan C I mengalir lewat 1 Q . Dengan C I mengalir lewat 1 L , tegangan kolektor mengalami penurunan. Tegangan ke arah negatif ini diberikan pada bagian bawah 1 T oleh kapasitor 4 C . Ini mengakibatkan arus mengalir pada kumparan bawah. Elektromagnet akan membesar di sekitar kumparan. Ini akan memotong kumparan bagian atas dan memberikan tegangan positif mengisi kapasitor 1 C . Tegangan ini juga diberikan pada 1 Q melalui 2 C . 1 Q akhirnya sampai pada titik jenuh dan mengakibatkan tidak terjadinya perubahan pada C V . Medan di bagian bawah 1 T akan dengan cepat habis dan mengakibatkan terjadinya perubahan polaritas tegangan pada bagian atas. Keping 1 C bagian atas sekarang menjadi negatif sedangkan bagian bawah menjadi positif.

Muatan 1 C yang telah terakumulasi akan mulai dilucuti melalui 1 T melalui proses rangkaian tangki. Tegangan negatif pada bagian atas 1 C menyebabkan 1 Q berubah ke negatif menuju cutoff. Selanjutnya ini akan mengakibatkan C V membesar dengan cepat. Tegangan ke arah positif kemudian ditransfer ke bagian bawah 1 T oleh 4 C , memberikan balikan. Tegangan ini akan tertambahkan pada tegangan 1 C . Perubahan pada C V beragsur-angsur berhenti, dan tidak ada tegangan yang dibalikkan melalui 4 C . 1 C telah sepenuhnya terlucuti. Medan magnet di bagian bawah 1 L kemudian menghilang. 1 C kemudian termuati lagi, dengan bagian bawah berpolaritas positif dan bagian atas negatif. 1 Q kemudian berkonduksi lagi. Proses ini akan berulang terus. Rangkaian tangki menghasilkan gelombang kontinu dimana hilangnya isi tangki dipenuhi lagi melalui balikan.

Sifat khusus osilator Hartley adalah adanya tapped coil. Sejumlah variasi rangkaian dimungkinkan. Kumparan mungkin dapat dipasang seri dengan kolektor. Variasi ini biasa disebut sebagai osilator Series-fed Hartley. Rangkaian seperti pada gambar 3.1 termasuk osilator Shunt-fed Hartley.
4.      Osilator Clapp
Gambar 4.1 Rangkaian Osilator Clapp
Osilator Clapp adalah versi modifikasi osilator Colpitt dengan kemantapan frekuensi lebih baik. Frekuensi ditentukan oleh deret kondensator Co dan induktor Lo dan bukan oleh kondensator jajar C1 dan C2 seperti dalam rangkaian osilator Colpitt standar. Untuk osilator Clapp :
      dan umpan balik positif diadakan oleh C1 dan C2. Kondensator-kondensator ini harus jauh lebih tinggi harganya daripada Co.


0 comments:

Post a Comment